

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - 7

Question Paper Code : 4P104

KEY

1	2	3	4	5	6	7	8	9	10
А	С	А	А	А	А	А	В	А	А
11	12	13	14	15	16	17	18	19	20
А	В	В	А	D	А	D	С	D	С
21	22	23	24	25	26	27	28	29	30
D	А	С	В	В	D	А	В	D	С
31	32	33	34	35	36	37	38	39	40
A,B,C,D	A,B,C,D	A,B,C,D	B,C	B,C,D	В	С	D	С	С
41	42	43	44	45	46	47	48	49	50
D	В	В	D	A	В	D	В	D	D

SOLUTIONS

03. (A) $\frac{2(x+4)+3(1+2x)}{4}=0$

8x = -11

 $x = -\frac{11}{8}$

2x + 8 + 3 + 6x = 0

04. (A) $x^2 - 2x - x(x + 1) = x^2 - 2x - x^2 - x$

 $=-3x = -3 \times 2025 = -6075$

MATHEMATICS – 1 (MCQ)

- 01. (A) Area = $9 \times 1 \text{ cm}^2 + 7 \times 1 \text{ cm}^2 + 5 \times 1 \text{ cm}^2 = 21 \text{ cm}^2$
- 02. (C) Given n || t

$$\Rightarrow$$
 a + 70° = 180° $\Rightarrow \angle a$ = 110°

$$l \mid \mid \mathsf{m} \Rightarrow \mathsf{b} + 130^{\circ} = \mathsf{180} \Rightarrow \angle \mathsf{b} = \mathsf{50}^{\circ}$$

70° + ∠b = ∠c

∠c = 120°

 $\angle a + \angle b + \angle c = 110^{\circ} + 50^{\circ} + 120^{\circ} = 280^{\circ}$ website : www.unifiedcouncil.com

05. (A) Given
$$\frac{3x}{4} + x + \frac{x}{2} = 180^{\circ}$$

 $\frac{3x + 4x + 2x}{4} = 180^{\circ}$
 $9x = 180^{\circ} \times 4$
 $x = 80^{\circ}$
06. (A) $\frac{3}{4} \times 5P = 90\%$ of C.P
(Since loss = 10%)
 $\Rightarrow 5.P = 12.0\%$ of C.P
 $\Rightarrow 0.2 \times 100 = 20\%$
07. (A) $Z = 40.8 \times +100^{\circ} = 180^{\circ}$
 $80t $\angle x + \angle x + \angle y = 180^{\circ}$
 $40^{\circ} + 80^{\circ} + \angle y = 180^{\circ}$
 $40^{\circ} + 80^{\circ} + \angle y = 180^{\circ}$
 $40^{\circ} + 80^{\circ} + \angle y = 180^{\circ}$
 $60!$ (B) Given B : Cl D = 2 : 3 : 7 = 2x : 3x : 7x
 \therefore 60° + 2x + 3x + 7x = 360°
 $12x = 360^{\circ} - 60^{\circ}$
 $x = \frac{300^{\circ}}{12} = 25^{\circ}$
C = 3x = 3 $\times 25^{\circ} = 75^{\circ}$
 $09.$ (A) Given $1 \mid |m \Rightarrow 4x + 25^{\circ} + 5x + 20^{\circ} = 180^{\circ}$
 $9x + 45^{\circ} = 180^{\circ} - 45^{\circ}$
 $9x = 180^{\circ} - 45^{\circ}$
 $9x = 135^{\circ}$
 $x = \frac{135^{\circ}}{9} = 15^{\circ}$
 $x = \frac{135^{\circ}}{9} = 15^{\circ}$
 $x = \frac{95^{\circ}}{38} = \frac{5^{\circ}}{2} = 2.5^{\circ}$
 $x = 8x - 5^{\circ} = 20^{\circ}$
 $x = \frac{95^{\circ}}{38} = \frac{5^{\circ}}{2} = 2.5^{\circ}$
 $x = 8x - 5^{\circ} = 20^{\circ}$
 $x = 45^{\circ} = 180^{\circ} - 45^{\circ}$
 $x = 135^{\circ} = 15^{\circ}$
 $x = 8x - 2.5^{\circ} = 20^{\circ}$
 $x = 135^{\circ} = 135^{\circ} = 135^{\circ}$
 $x = 8x - 2.5^{\circ} = 20^{\circ}$
 $x = 2$$

3508.4

2

ſ

16. (A)	Given a = C = 1	22. (A)
	Given ab, ba, cd & dc are primes.	
<i>.</i>	ab = 13 & ba = 31	
	cd = 17 & dc = 71	
	$\therefore \frac{ab+ba}{cd+dc} = \frac{13+31}{17+71} = \frac{44}{88} = \frac{1}{2}$	23. (C)
17. (D)	Given AB : BC = 1 : 2 and BC : CD = 5 : 8	
<i>.</i>	AB : BC : CD = 5 : 10 : 16 = $5x : 10x : 16x$	
<i>.</i>	AB : BD = 5x : (10x + 16x) =	<i>.</i>
	5 <i>x</i> :26 <i>x</i> =5:26	24. (B)
18. (C)	$144 - \frac{1024}{16} \times 32 - 123$	
	= 144 - 2048 - 123 = - 2027	
19. (D)	Const.: AQ PO	
<i>.</i>	$\angle OPQ + \angle PQA = 180^{\circ}$	
	[∵ Sum of the interior angles]	25. (B)
	∠PQA = 70°	
	But ∠AQR = ∠QRS	
	[: Alternative angles]	26. (D)
.:.	\angle PQA + \angle PQR = 130°	
	70° + ∠PQR = 130°	27. (A)
	∠PQR = 60°	
20. (C)	Given profit = ₹ 175	
	Let CP be $\gtrless x$.	
	Given 14% of <i>x</i> = ₹ 175	
	14 100 × <i>x</i> = ₹ 175	
	<i>x</i> = ₹ 1250	
	∴ CP = ₹ 1250	
	SP = CP + P = 1250 + 175 = 1425	
21. (D)	Given $\sqrt{l^2+b^2}=2b$	
	Squaring on both sides	
	$l^2 + b^2 = 4b^2$	20 (D)
	$l^2 = 4b^2 - b^2$	28. (B)
	$l^2 = 3b^2$	20 (ח)
	$l=\sqrt{3b^2}=\sqrt{3b}$	23. (D)
	$\therefore \frac{l}{b} = \sqrt{3}$	
	$\therefore l:b=\sqrt{3}:1$	

 $\angle ABD = 180^{\circ} - 100^{\circ} = 80^{\circ}$ In $\triangle ABD$, $AB = AD \angle ADB = \angle ABD = 80^{\circ}$ In \triangle ACD, *x* + 25° = 80° $x = 80^{\circ} - 25^{\circ} = 55^{\circ}$ In \triangle RST, 27° + 100° + \angle S = 180° $\angle S = 180^{\circ} - 127^{\circ} = 53^{\circ}$ But $\angle P = \angle S$ [:: Alternative angles] $\angle P = 53^{\circ}$ Let the two equal angles be 'x' $x + x = 180^{\circ}$ $2x = 180^{\circ}$ $x = 90^{\circ}$ \therefore Each equal angle = 90° $\frac{5}{11} < \frac{1}{2} < \frac{3}{4} < \frac{6}{7}$ $\frac{-6}{7} < \frac{-3}{4} < \frac{-1}{2} < \frac{-5}{11}$ 360° LHS = $\left(\frac{13x}{4} - \frac{5}{14}y - \frac{13z}{10}\right)$ $-\left(\frac{-11}{2}x - \frac{13y}{7} - \frac{12z}{5}\right)$ $=\frac{13x}{4} - \frac{5}{14}y - \frac{13z}{10} + \frac{11x}{2} + \frac{13y}{7} + \frac{12z}{5}$ $= \left(\frac{13x}{4} + \frac{11x}{2}\right) + \left(\frac{13y}{7} - \frac{5y}{14}\right) + \left(\frac{12z}{5} - \frac{13z}{10}\right)$ $= \left(\frac{13x + 22x}{4}\right) + \left(\frac{26y - 5y}{14}\right) + \left(\frac{24z - 13z}{10}\right)$ $=\frac{35x}{4}+\frac{21y}{14}+\frac{11z}{10}$ $=\frac{35x}{4}+\frac{3y}{2}+\frac{11z}{10}$ $\angle ACB = 45^{\circ}$ $\frac{26}{100} \times 450 - x = \frac{12}{100} \times 150$ 117 - x = 18x = 99

5. (B,C,D)
$$\frac{7x}{2} - \frac{5x}{2} - \frac{20x}{3} = 10$$

 $\frac{21x - 15x - 40x}{6} = 10$
 $-\frac{34x}{6} = 10$
 $\frac{17x}{3} = -10$
 $x = -10 \times \frac{3}{17} = -\frac{30}{7}$
∴ Option (A) is false, rest of all true.

REASONING

- 36. (B) The first figure rotates 90° ACW, completes the figure and fills interchange.
- 37. (C) Every alternate figure has 4 and 2 dots respectively and two lines forming 90° angle (line ¬) is added at the end in CW direction in each step to form a shape as in the last square.

38. (D) (3 × 4) − 8 = 4; (2 × 5) − 4 = 6; (4 × 5) − 9 = 11

- 39. (C) Number of lines inside the square and outside at the bottom are the same unlike the others.
- 40. (C) $V \xrightarrow{X Z D}_{F}$ T H R J P N L

The hour hand will be between P and R at 7: 30.

41. (D) $R \xrightarrow{E} P$ NSXS.W

X is in the south-west direction of P.

Name	Name	Lives on	
Suma	Singer	5th floor	
Pavitra	Doctor	4th floor	
Meghana	Engineer	3rd floor	
Nikita	Artist	2nd floor	

47. (D) From 1 and 2 statements 6 is not the correct number.

From 4th statement 7,3, and 8 are not the correct number.

From 5th statement we conclude that "0" is the correct number but in wrong position. So, "0" occupies 1st position (since 0 is one of the numbers in the wrong place from statement 3).

From 1st statement we conclude that 2 is the 3rd digit.

0_2

- From statement 2, since 1 or 4 is in the wrong place, we need to determine which.
- 1 cannot be in the second place. So, 4 occupies 2nd position.

Therefore, the digits are 042.

48. (B) In July 2018, the month had 31 days.There were four Wednesdays and four Saturdays.

The first day of July 2018 was a Sunday. If you count from there:

 7th, 14th, 21st and 28th July are all Saturdays.

So, 28th July 2018 was a Saturday

49. (D) $M \times N - C + F$

